Practice Exercise page 24

Calculate the molality and mole fraction of NH_{3} if it is in a solution composed of $30.6 \mathrm{~g} \mathrm{NH}_{3}$ in 81.3 g of $\mathrm{H}_{2} \mathrm{O}$. The density of the solution is $0.982 \mathrm{~g} / \mathrm{mL}$, density of water is $1.0 \mathrm{~g} / \mathrm{mL} .(\mathrm{N}=14, \mathrm{H}=1, \mathrm{O}=16)$

Answer:

Molality (m) $=\mathbf{n}_{\text {(solute) }} /$ mass (solvent in $^{\mathbf{K g})}$,
$\mathrm{n}_{\text {(solute) }}=$ its mass / molar mass
$\mathrm{so}=\mathrm{n}_{(\mathrm{NH} 3)}=30.6 / 17=1.8$ moles
mass of solvent in $\mathrm{Kg}=81.3 / 1000=0.0813 \mathrm{~kg}$
so $\mathrm{m}=1.44 / 0.0813=22.1$ mole $/ \mathrm{kg}$ solvent
mole fraction of $\mathbf{N H}_{3}\left(\mathbf{X}_{\mathbf{N H} 3}\right)=\mathbf{n}_{\mathrm{NH} 3} / \mathbf{n}_{\text {(total) }}$
$\mathrm{n}_{\text {total }}=\mathrm{n}_{(\mathrm{NH} 3)}+\mathrm{n}_{(\mathrm{H} 2 \mathrm{O})}$
$\mathrm{n}_{(\mathrm{H} 2 \mathrm{O})}=$ its mass $/$ molar mass $=81.3 / 18=4.52$ moles
so $n($ total $)=n_{(\mathrm{NH} 3)}+\mathrm{n}_{(\mathrm{H} 2 \mathrm{O})}=1.8+4.52=6.32$ moles
then $X_{(N H 3)}=1.8 / 6.32=0.285$

Given:

Mass of solute $=30.6 \mathrm{~g}$
Mass of solvent $=81.3 \mathrm{~g}$ $\operatorname{molar}_{\operatorname{mass}_{(\mathrm{NH} 3)}}=14+3 \mathrm{x} 1=17$ $\mathrm{g} / \mathrm{mol}$
$\operatorname{molar}_{\operatorname{mass}_{(\mathrm{H} 2 \mathrm{O})}}=2 \times 1+16=18$

Practice Exercise page 34

Oxygen is much less soluble in water than carbon dioxide, $0.00412 \mathrm{~g} / 100 \mathrm{~mL}$ at $20^{\circ} \mathrm{C}$ and 760 mm Hg . Calculate the solubility of oxygen gas in water at $20^{\circ} \mathrm{C}$ and a pressure of 1150 mm Hg .

Answer:

$$
\mathbf{m}=\mathbf{k} \mathbf{P}
$$

since m is the solubility of gas in a liquid, and k : is Hennery's constant, and P : is the pressure of gas above liquid.

$$
\begin{equation*}
m_{1} / m_{2}=\mathbf{P}_{1} / \mathbf{P}_{2} \tag{1}
\end{equation*}
$$

Apply in (1) by the given values: $\mathrm{m}_{2}=0.0062 \mathrm{~g} / 100 \mathrm{~mL}$

Given:

$\mathrm{m}_{1}=0.00412 \mathrm{~g} / 100$,
$\mathrm{P}_{1}=760 \mathrm{mg} \mathrm{Hg}$
$\mathrm{m}_{2}=$?? ,
$\mathrm{P} 2=1150 \mathrm{~mm} \mathrm{Hg}$

Practice Exercise page 43

Benzene and toluene form an ideal solution at all proportion. The vapor pressure of pure benzene and pure toluene at $25{ }^{\circ} \mathrm{C}$ are 95.1 and 28.4 mmHg , respectively. What is the vapor pressure of a solution that contains 50.0 g benzene (mw 78.11) and 50.0 g toluene (mw 92.13)? What is the composition of the vapor that is in equilibrium with this solution at $25^{\circ} \mathrm{C}$?

Answer:

Since solution obeys Raoult's law, then, $\mathbf{P}_{\mathbf{t}}=\mathbf{X}_{\mathrm{A}} . \mathbf{P}_{\mathrm{A}}^{\mathbf{0}}+\mathbf{X}_{\mathbf{B}} . \mathbf{P}_{\mathbf{B}}^{\mathbf{0}}$ (1)
$\mathrm{P}_{\mathrm{A}}^{\mathrm{o}}$ and $\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}$ are the vapor pressure of the pure solvents, and XA, XB are their respective mole fractions. Let benzene $=\mathrm{A}$, and toluene $=\mathrm{B}$
$\mathrm{n}_{\mathrm{A}}=\frac{m_{A}}{m \cdot w_{A}}=\frac{50}{78.11}=0.640$ mole
$\mathrm{n}_{\mathrm{A}}=\frac{m_{B}}{m \cdot w_{B}}=\frac{50}{92.13}=0.543 \mathrm{~mole}$
$\mathrm{X}_{\mathrm{A}}=\frac{n_{A}}{n_{A}+n_{B}} \quad=\frac{0.640}{0.640+0.543}=0.541$
$\mathrm{X}_{\mathrm{B}}=1.0-0.541=0.459$
apply in (1),
$\mathrm{P}_{(\text {soln })}=0.541 \times 95.1+0.459 \times 28.4=64.48 \mathrm{mmHg}$

Given:

Masses of components:
$\mathrm{m}_{(\mathrm{A})}=50.0 \mathrm{~g}, \quad \mathrm{~m}_{(\mathrm{B})}=50.0 \mathrm{~g}$
molar masses of components $(\mathrm{g} / \mathrm{mol})$:
$\mathrm{m} . \mathrm{w}_{(\mathrm{A})}=78.11, \quad \mathrm{~m} \cdot \mathrm{w}_{(\mathrm{B})}=92.13$
$\mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=95.1 \mathrm{mmHg}$,
$\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=28.4 \mathrm{mmHg}$
to solve the second part, apply in Dalton's law of gases mixture which states that the partial pressure of gas in a gases mixture equals its mole fraction multiplied by the total pressure of that mixture: $P_{A}=Y_{A} \cdot P_{(t)}$, since Y_{A} is the mole fraction of A in vapor state.
$\mathrm{P}_{\mathrm{A}}=0.541 \times 95.1=51.45 \mathrm{mmHg}, \mathrm{P}_{\mathrm{B}}=0.459 \times 28.4=13.04 \mathrm{mmHg}, \mathrm{P}(\mathrm{t})=64.48$

So $\mathrm{Y}_{\mathrm{A}}=64.48 / 51.45=0.8, \mathrm{Y}_{\mathrm{B}}=0.2$

Practice Exercise page 60

How many grams of nonvolatile compound B (molar mass $=97.80 \mathrm{~g} / \mathrm{mol}$) would need to be added to 180.0 g of water to produce a solution with a vapor pressure of 40.362 torr? The vapor pressure of water at this temperature is 42.362 torr.

Answer:

$$
\mathbf{P}_{\text {solution }}=\left(\chi_{\text {solvent }}\right)\left(\mathbf{P}_{\text {solvent }}^{\circ}\right)
$$

$40.362=X_{A} \times 42.362$, then $X_{A}=0.953$
So $\mathrm{X}_{\mathrm{B}}=1.0-0.953=0.047$
$\mathrm{X}_{\mathrm{B}}=\frac{n_{B}}{n_{A}+n_{B}}, \quad 0.047=\frac{n_{B}}{180 / 18+n_{B}} \quad$ so
$0.47+0.047 \mathrm{n}_{\mathrm{B}}=\mathrm{n}_{\mathrm{B}} \quad$ so $\mathrm{n}_{\mathrm{B}}=0.493$ moles
$\mathrm{n}_{\mathrm{B}}=$ mass/molar mass
so mass of $B=0.493 \times 97.80=48.2 \mathrm{~g}$

Given:

molar mass of $\mathrm{B}=97.80 \mathrm{~g} / \mathrm{mol}$ mass of $\mathrm{A}($ water $)=180 \mathrm{~g}$ molar mass of water $=18 \mathrm{~g} / \mathrm{mol}$ V.P of solution $=40.362$ torr V.P of water $\left(\mathrm{P}_{\mathrm{A}}^{\mathrm{O}}\right)=42.362$ torr

Practice Exercise page 71

Find the boiling point of a solution of 92.1 g of iodine, I_{2}, in 800.0 g of chloroform, CHCl_{3}, assuming that the solution is ideal and the iodine is non-volatile non-electrolyte. (atomic mass of $\mathrm{I}=126.9 \mathrm{amu}$).

Answer:

For non-volatile non-electrolyte solute, $\quad \Delta \mathbf{T}_{\mathbf{b}}=\mathbf{k}_{\mathbf{b}} . \mathbf{m}$ $\mathrm{n}($ solute $)=$ mass $/$ molar mass $=92.1 / 253.8=0.363$ moles

$$
\begin{aligned}
\mathrm{m} & =\mathrm{n}(\text { solute }) / \mathrm{kg} \text { of solvent } \\
& =0.363 / 0.8=0.454 \mathrm{~mol} / \mathrm{Kg}
\end{aligned}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=3.63 \times 0.454=1.65^{\circ} \mathrm{C}$

So B.P $($ solution $)=\Delta T_{b}+B . P($ solvent $)$

$$
=1.65+61.26=62.91^{\circ} \mathrm{C}
$$

Mass of solute $=92.1 \mathrm{~g}$
Mass of solvent $=800.0 \mathrm{~g}$
Molar mass of $\mathrm{I}_{2}=126.9 \times 2=253.8$
B.P of solvent $=61.26^{\circ} \mathrm{C}$
K_{b} of solvent $=3.63$

Practice Exercise page75

What is the osmotic pressure (atm) of a solution with a volume of 0.750 L and containing 5.0 g of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, in water at $37^{\circ} \mathrm{C}$?

Answer:

$$
\pi=\mathbf{M} \cdot \mathbf{R} \cdot \mathbf{T}
$$

since π is the osmotic pressure of a solution of molarity (M), at temperature of $(T=t+273)$, and $R=$ universal gas constant $=0.0821 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}$
$\mathrm{T}=37+273=310$
$\mathrm{M}=\mathrm{n}($ solute $) / \mathrm{V}($ soln $), \quad \mathrm{n}($ solute $)=$ mass $/$ molar mass
molar mass of $\mathrm{CH}_{3} \mathrm{OH}=12+4 \times 1.0+16=32.0 \mathrm{~g} / \mathrm{mol}$
so $n($ solute $)=5.0 / 32.0=0.156 \mathrm{~mol}$
$\mathrm{M}=0.156 / 0.750=0.208 \mathrm{~mol} /$ liter
So $\pi=0.208 \times 0.0821 \times 310=5.3 \mathrm{~atm}$

